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Modified symmetry generators and the geometric phase 

Ptter Ltvayt 
H H Wills Physics Laboratmy, Tyndall Avenue, Bristol BS8 ITL. UK 

Received 21 June 1993 

Abstract. Coupled systems of slow and fast variables with symmetry. characterized by a 
semisimple Lie group G, are employed to study the effect of adiabatic decoupling of the fast 
degrees of freedom on the algebra of symmetry generators. The slow configuration space is 
assumed to be the symmetric coset space GIH. where H is a compacl subgroup of G defined 
by the fast Hamiltonim. The induced gauge fields chancterizing the effective slow dynamics are 
symmetric ones in the sense that the action of G on them can be compensated by an H-valued 
gauge transformation. The modification of the symmetry generators when such gauge fields are 
present can be described purely in geometric terms related to the non-Abelian geomehic phase. 
The modified generators may be identified as the generators of the induced representation of G, 
where the inducing represention is the representation of H on the fast Hilberl space. This result 
enables us to m t  the problem of exotic quantum numbers for effective quantum Systems 
in purely algebraic terms via the Frobenius reciprocity theorem. lllusmive calculations for 
the symmetric spaces SO(d t l ) / S O ( d )  - Sd (spheres) are presented. Possible relevance of 
modified generators for non-compact G for obtaining scattering potentials in the fnmework of 
algebraic scattering theory is also pointed out. 

1. Introduction 

In physics we are often faced with the problem of describing the dynamics of coupled 
systems with different energy scales, e.g. systems involving slow and fast degrees 
of freedom. Examples of this kind ranging from the molecular Bom-Oppenheimer 
approximation to field theory have been extensively studied by employing the concept 
of the geometric phase [ 1,2]. It is now well known that the adiabatic decoupling of the 
fast variables from the slow ones may result in an effective theory with both Abelian and 
non-Abelian induced gauge fields. Such gauge fields have a crucial impact on the effective 
slow dynamics. The presence of such fields is responsible for the appearance of exotic 
quantum numbers, e.g. half-integer orbital angular momentum for diatoms [3,4]. The main 
theme in these phenomena is that the good quantum numbers for the effective theory can 
be described as eigenvalues of some modified set of operators commuting with the effective 
Hamiltonian. 

It is well known that the algebra of symmetry generators has to be modified when 
gauge-fields are present [5,6]. This idea was emphasized in [7] in connection with the 
geometric phase. The crucial observation for applying the procedure of [5 ]  and [6]  is that 
the gauge fields usually appearing in the examples concerning the geometric phase are 
symmetric ones, in the sense that the effect of a symmetry transformation on the fields can 
be compensated by a suitable gauge transformation. This point was further emphasized 
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by Vinet [8] in his differential geometric treatment of symmetric gauge fields and the 
geometric phase. However in [81 the dynamics of only the fast variables was considered, 
and the parameters of the Hamiltonian played no dynamical role. In this paper. by promoting 
the external parameters to slow dynamical variables, we examine the geometric origin of 
modified symmetry generators. In order to do this we consider a simple class of models 
where the slow configuration space is a coset space G / H .  We impose further restrictions 
on our class of models so as to enable an explicit construction of the modified symmetry 
generators. The first restriction is that C / H  is a symmetric space. The second is that the 
matrix elements, with respect to a degenerate eigensubspace of the fast Hamiltonian, of the 
generators of g not belonging to hare  vanishing (g and la are the Lie algebras of G and H).  

In section 2 we present our class of models and discuss their basic geometrical properties. 
In section 3 we show that symmetric gauge fields arise naturally for such models. Using 
some elementary properties of symmetric coset spaces, in section 4 we explicitly construct 
the Killing vectors (generators of the infinitesimal action of G on G / H ) ,  and compensating 
gauge transformations in terms of the structure constants of g and the normal coordinates 
on G / H .  In section 5 we discuss the symmetry properties of our models. Employing the 
Born-Oppenheimer method we obtain an effective slow Hamiltonian. We also define here 
the modified symmetry generators as the ones commuting with the effective Hamiltonian. In 
section 6.1 we illustrate our results for a class of models where the slow configuration spaces 
are spheres S" - SO@+ I)/SO(d). For the special case of d = 2 we obtain the well known 
modification of the angular momentum algebra when a magnetic monopole is present 171. 
For n = 4 we get a modified set of SO(5) generators used, for example, by Yang for the 
construction of SU(2)  monopole harmonics [9]. In section 6.2 it is argued that realizations of 
non-compact groups in terms of modified symmetry generators may be useful for obtaining 
analytical expressions for interaction terms corresponding to scattering problems, in the 
spirit of algebraic scattering theory. In section 7 we show that the appearence of exotic 
quantum numbers in effective quantum systems can be described using the theory of induced 
representations. Our conclusions are left for section 8. 

2. Coset space models 

Let G be a semisimple Lie-group and H a compact subgroup of G .  We denote by g 
and h the Lie algebras of G and H, both are spanned by anti-Hermitian generators. The 
Cartan-Killing metric 

4 1 ,  = C ~ K ~ C J L ~  I ,  J ,  .. . = 1,2, .. ., dimg (2.1) 

is non-degenerate. C , J ~  are the structure constants of g. For C compact the metric can be 
taken to be proportional to the identity. 

The class of models of coupled slow and fast variables is defined by the total Hamiltonian 

where x E G / H  are coordinates on the symmetric coset space, K I  are the Killing vectors 
generating infinitesimal G rotations on G / H  (described below), and U'*' is a unitary 
irreducible representation of G labelled by A.  Moreover Ho does not depend on x .  and 
commutes with the restriction of U") to the subgroup H. Recall also that K I  are first- 
order differential operators. and the combination q i J K , K J  ( q i J  is the inverse of vi,) is 
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the second-order Laplace-Beltrami operator on G / H .  It is clear that the slow configuration 
space is C/H and ffbn corresponds to the kinetic energy for a particle with mass M 
constrained to move on G/H. We assume that M is sufficiently large in order to ensure 
the validity of the Born-Oppenheimer approximation. 

In order to clarify the meaning of our class of models, let us consider a specific example. 
Let us choose G = SU(2), H = U ( I )  ; hence our coset is S2 - SU(Z)/U(I), the 2-sphere. 
We can parametrize S2 (locally) by the polar coordinates (6 ,  rp), However, let us choose 
instead of these the coordinates (xt,x?). where 

XI  =-Bsin(o x2=6'cos(o. (2.3) 

We can parametrize an element of SU(2), by the coset space coordinates XI ,  xz in the form 

L ( X )  exlJlfXzfi E ~ ( 2 )  (2.4) 

where 31 and 3 2  are the generators of the Lie-algebra su(2) not belonging to the subalgebra 
u ( 1 )  taken to be spanned by the generator 3 3 .  Of course the (anti-Hermitian) generators 
ZI ( I  = 1, 2,3)  satisfy 

[apzjl = & I I K z K  I, J, K = 1.2,3.  (2.5) 

Let us restrict our attention to a particular representation U(*) of Su(2). In particular we 
can represent the group element (2.4) in the form 

(2 .6) 

where for simplicity we have used the same letters 31 for the generators of 4 2 )  in the 
representation U(*). Choosing Ho to be 3 3 ,  then using (2.3) and (2.6) one can show that 

W ( x )  U(*) (L(x ) )  = e X I 3  + x * A  

U("(X)HOU")+(X) = AX, = H ( X )  (2.7) 

where (XI, X I ,  X 3 )  
infinitesimal Le@ action of sU(2) on S2 are 

(sin e cos rp, sin 0 sin (0. cos e). The Killing vectors generating the 

a 
a x K  

K I  = E I J K X J -  

i.e. the usual set of (anti-Hermitian) orbital angular momentum operators satisfying [IO] 
[Ki ,Kc, l=  - E I I K ~ C K .  

As Hhn is the angular momentum part of the standard Laplacian in R3, we see that 
it generates motion on the sphere. Using together with H(X) of (2.7) we recover 
the well known example of a spin coupled to an outward magnetic field. The unit vector 
X which determines the direction of the~magnetic field, plays a dynamical role due to the 
presence of Hb. in the total Hamiltonian. 

Let us now explore the geometrical properties of our models. Recall first that a lefr coset 
is the set of equivalence classes of the form g H  where g E G. Two elements g l ,  g2 E G 
belong to the same equivalence class G J H  iff there exists h E H such that gz = glh .  
Moreover there is a natural left action of G on G J H  defined for g E G by the mapping 
(gl H )  + g(gl H) = (ggl H ) .  For practical purposes it is convenient to introduce some 
(local) coordinates xi' (p = I ,  2,. . . , dimG/H) on G J H .  and an explicit mapping x H gx.  
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Especially we will be interested in the infinitesimal form of this mapping with g - e + U 
i.e. x H x + 6 x ( u ,  x ) .  The explicit form of &(U. x )  will be given in section 4. 

As a next step we split the Lie algebra g according to g = h @ m. Since our Lie- 
algebra is semi-simple the subspace m can be regarded as the orthogonal complement of 
h with respect to the Cartan-Killing metric. Let us denote the generators of h by S, (a = 
1,2 , .  . . , dimh) and the generators belonging to m by T, (or = I ,  2 , .  . . , dimg - dimh). 
Hence 

(2.9) 

n is actually the tangent space to GJH at the identity coset therefore we can use the 
generators T, E m to parametrize a group element (coset representative) in the form 

(2.10) 

Notice that the indices (or, B. . . .) refer to the properties of G / H  at the identity coset, while 
the indices (p, U, . . .) with the same range refer to the coordinates x p  at a neighbourhood 
of the identity (normal coordinates). However, for simplicity we shall omit the 8," 
in cases where no confusion arises and use the greek indices (or. p ,  , . .) and (p ,  U,. . .) 
interchangeably. 

As C J H  being a symmetric space we have the following set of commutation relations 
[ I l l :  

(Jll = P o t  fB (Tel. 

E G p,w = 1,2, .. , , dimCJH . x@6,,*Tu L (x )  = e  

[sa. sh] = cab'& [so, Tu] = Coa'Tp [Ta, Tal = c @ " S a .  (2.11) 

Now we discuss the symmetry properties of the eigensubspaces of H ( x )  of (2.2). Let us 
denote the identity coset by xo which can be regarded as a reference point. We also assume 
that the eigenvalues and eigenvectors of Ho = H ( x 0 )  are known 

~oln. j (xo))  = E % ,  j ( x o ) ) .  (2.12) 

The dimension of the Hilbert space 'H is fixed by the representation U'",, j = 
1,2, ..., dim'Hn, 'Hn is the eigensubspace of 'H corresponding to the eigenvalue E ( " ) .  

Moreover, since HO commutes with the restriction of U@) to the subgroup H we can 
define 

U"'(h)ln. j ( x 0 ) )  = In, i (xo))Rij(")(h)  h E H (2.13) 

where we assume that R'"' is a unitary irreducible representation of H occuring in the 
restriction of U@) to H (which is generally reducible). 

The eigenvectors of H(x) have the following form: 

~ n ,  j ( x ) )  = u ' W ( x ) ) ~ n , . i ( x o ) )  (2.14) 

How does where we used the definition of the coset representative (2.10) and (2.2). 
W ( g )  g E C act on In, j ( x ) ) ?  We expect 

~ ' " ( g ) l n ,  j ( x ) )  = U ( Y g L ( x ) ) i n ,  j h ) )  = In, j ( g x ) ) .  (2.15) 

However, In, j ( g x ) )  remains an eigenvector of H ( g x )  corresponding to E(") if we make a 
transformation 

In, j ( g x ) )  H ~ n ,  ikx))Rij'"'(~(g~ x ) )  (2.16) 
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where we can also allow an x dependence for h E H. The final result for the action of the 
symmetry group G on the eigensubspaces of H ( x )  is 

U‘”(g)In, j ( x ) )  = In, i ( g x ) ) R , j “ W g .  x ) ) .  (2.17) 

This property of the eigensubspaces can be traced back to the property of the coset G / H  

g U x )  = L(gx)hk, x )  (2.18) 

by virtue of (2.13), (2.14) and (2.17). Since h ( g . x )  E H we can write 

h(& x )  eY”(s..w“ E eY(E.”)s. (2.19) 

Using (2.10) and adopting the notation x’6,’T, = xT we can write (2.18) in the following 
form: 

exT = ex‘(s,x:)T e~(s.=)S (2.20) 

3. Symmetric gauge fields 

Now we show that as a result of (2.20) symmetric gauge fields will arise. Let us introduce 
d dxpa,. Regarding g as fixed we differentiate (2.20) and eliminate g to obtain 

(3.1) 

As a next step we would like to know the infinitesimal version of (3.1). Let g = e + U = 
e +U“& + PT,, U’ ( I  = 1.2, . . , , dimg) is infinitesimal. Then 

e-X’T d eX’T = eYs (e-Xr d eXT + d) e-Ys , 

x’l’ = xp + Gx’(u,x)  E xp + U‘SX,”(X) (3 .24  

y“ = 6y‘(u, x )  = u’6y,O(x). (3.26) 

Using the notation 

o = o p ( x ) d x p  E L - ’ ( x ) d L ( x )  = e-xTdeXr (3.3) 

we obtain for the left-hand side of (3.1) 

w p ( x )  + W ( U ,  X)&W, + a, (sx”(U,  X))O”(X) (3.4) 

and for the right-hand side of (3.1) 

o,(x)+ [ ~ Y ( U , x ) s , ~ , ( x ) l -  a p @ Y ( U * x ) s ) .  (3.5) 

The second and third terms in (3.4) define the Lie derivative of o,(x) in the direction 
defined by 6xp(u,  x ) .  while the corresponding terms of (3.5) define minus the covariant 
derivative V(”’),, of 6y(u ,  x ) S  with respect to the gauge field o,,(x). 
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Introducing the notation [6] 
f " u , x )  u'f ,"x) -u'6x,"(x) 

W/(U. x )  U I W , ( x )  EE u~Gy,"(x)S,  

v,@J' 5s a, + [w,, .I 

L,w, = v,'"wr 
the infinitesimal version of (3.1) can be recast in the form 

(3 .b )  
(3.66) 

( 3 . 6 ~ )  

(3.7) 
which is the symmetry condition for w, according to [SI and [6]. 

Now we can see that by solving (2.20) for the infinitesimal quantities defined by 
(322, 6) we can obtain the explicit form of the coordinate transformation x H x + S ( u ,  x )  
corresponding to the group action of G on G / H .  Moreover we realize that w, is a symmetric 
gauge field in the sense that its response to this infinitesimal coordinate transformation 
(1310,) can be compensated by an infinitesimal gauge transformation defined by W, of 
(3.6b). 

Since w,dxg is a g-valued I-form we can expand it in terms of the generators belonging 
to the subspaces h and m, 

The curvature 2-form of w is S2 = dw + o A o = 0 hence the symmetric gauge-field w, is 
trivial. However after separating the k and m parts of (3.7) we get 

. C ~ A , = V , , W ~ ~ a , W ~  +[A,,W/] (3.9a) 

LIE,, = [E,. W f l .  (3.9b) 
Moreover the curvature of A ,  F = dA + A A A = -E A E .  Hence the h component of w 
is a non-trivial symmetric gauge field. 

Now let us recall that such results arose by virtue of (2.18) characterizing the geometry 
of our coset space C / H .  However,we are interested in the structure of the eigensubspaces 
over C / H  encoded in (2.17). (In mathematical t e rm we are interested in the structure 
of the homogeneous vector bundle associated with the canonical principal bundle G over 
G / H . )  Since the induced gauge fields, relevant to the dynamics have the form [ 1,2] 

o, dx' = A,'dx'S, + EflUdxPT, A, 6;" + E ,  dx' . (3.8) 

d,tj(") = (a, i(x)la,ln. j ( x ) )  = (i(xo)lw,ln, j ( xo ) )  

= (n. i(xo)ISaln, j (xo))Ae" + (n,  i(xo)lT&, j(xo))E,' (3.10) 
we have to calculate the matrix elements of the generators S, and T, in the base spanned 
by the vectors in the subspace X,. These matrix elements provided by the irreducible 
representation defined by (2.13) will be denoted by So(") and Tu(") [ l l] .  They are actually 
dimX, x dim1-I. matrices. In this paper we will only consider models where the matrix 
elements Tu'"' are zero. Such restriction was employed [ 11 j to show that in this case 
A,'"' corresponds to the connection obtained by lifting the natural Riemannian connection 
on GIH to our homogeneous vector bundle with fibres the degenerate eigensubspaces. 
Hence the non-trivial symmetric gauge fields that characterize the dynamics governed by 
the Hamiltonian H ( x )  appearing in (2.2) are of the form 

d,ij'"'(x) = A,"(x)(S,'"')~~ . (3.11) 
Due to the non-triviality of A,'"' the non-Abelian version of Berry's phase appears, and 
it cannot be globally transformed away. Hence such gauge-fields will have an impact 
on the dynamics of the parameters x when we add to H ( x )  the kinetic term Hho of 
(2.2) and adiabatically decouple the fast degrees of freedom using the Born-Oppenheimer 
approximation. As a result, the modification of the dynamics will yield modified symmetry 
generators for the group G, commuting with the effective Hamiltonian of the slow system. 
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4. Killing vectors and compensating gauge transformations 

In this section we solve the infinitesimal version of (2.20) for the quantities Sx,' and Sy," 
defined by (3%. b). The Killing vectors generating the left action of G on G/H are the 
differential operators 

IC/ = Sx1'8, 

[ I C r , l C , ]  = - C I J ~ I C K  

I = 1,2,. . . , dimg (4.1) 

satisfying [ 101 

I ,  J, K = 1,2, ... ,dimg (4.2) 

and the compensating gauge transformations WI are defined by (3.6b). 
Let us first define the following quantities 

(4.3a) 

(4.3b) 

with L ( x )  defined by (2.10). Recall that the mapping ,?, H L(x) ,? ,L- ' (x)  = (V-')1'3, 
defines the adjoint action of L ( x )  on g. Being an automorphism of g, this mapping leaves 
the Cartan-Killing metric invariant, i.e. 

71, E (,?,>zJ) = ( ( ~ - ' ) I K ~ ~ ~ ( ~ - ' ) , ' ~ ~ L )  = ( ~ - ' ) / K ( ~ - ' ) , ' ~ K L .  (4.4) 

Using (2.1&), (2.20) and (3.2a, b) with g = e + u'31 we obtain 

L(x + Sx) = ( e  + u"S, + uUT,)L(x)(e - 6 y " S , ) .  (4.5) 

After multiplication by L - ' ( x )  we get by virtue of (3.3) and (3.8) 

u'Gx/"(A,"S, + EFuTa) = u'(V/"S, +Vi"T,) - u ' S Y I ~ S ~ .  (4.6) 

Separating terms proportional to Sa and T, we get, 

( 4 . 7 ~ )  

(4.7b) 

where 

n," 5 E,"A,". (4.8) 

Notice that E,= is a quadratic non-singular matrix and in (4.7a, 6) its inverse has been 
used. We can now express the Killing vectors as 

IC1 = V/*E,"a, (4.9) 

and multiplication of the 'vector' S, by the matrix Syra of (4.7b) gives the compensating 
gauge transformation. 
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Now we give explicit formulae for these quantities exploiting the (2.10) form of L ( x ) .  
Using the f o r m ~ l a e ~ B e - ~  = B + [ A ,  BI+i[A, [ A ,  B ] ] + ,  . . and the commutation relations 
in (2.1 1) we obtain 

where 

Nom = -x'CWu 

Meu = x"C,,'. 

(4.1 la) 

(4.1 Ib) 

We also need explicit expressions for A,," and E,". Assuming B small, we use the formula 
[I21 

with A = x T ,  B E dxT to obtain 

(4.13a) 

(4.13b) 

Note, that in these formulae the functions of the matrices N M  and M N  are computed using 
the power-series expansions 

(4 .14~)  
1 1 

2! 4! 
C O S ~ = I - - ( M N ) + - ( M N ) ~ - - ~ .  

sin f i  = I  1 - - ( M N ) + - ( M N ) ' - , .  1 m 3! S! 
(4.14b) 

and in  (4.13a) the formula Mf(NM) = f (MN)M is used which is valid for analytic 
functions [13]. 

One can easily prove using the above calculated quantities that 

6x,' = Nufl (4.1Sa) 

6y,h = 8*h (4.156) 

hence the h components of the Killing vectors and compensating gauge transformations are 

Km = N."a, (4.16a) 

w. = s, . (4.16b) 

For the m components (L, W,) we obtain more complicated expressions which are 
nonlinear in xL .  We will calculate these components using an explicit example in section 6. 
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5. Modified symmetry generators 

As a next step we discuss the symmetry properties of the total Hamiltonian of (2.2). We can 
employ two types of C transformations. a transformation of the form x* w x p  +6x* (u ,  x )  
on the slow (coset) variables, and one of the form In, j ( x ) )  w U@)(g)(n,  j ( x ) )  on the fast 
ones, where g = e + U ,  U infinitesimal. One can easily show that a combined infinitesimal 
rotation of both types of variables leaves the system invariant. 

( I  = I ,  2, . . . , dimg) the infinitesimal generators of G in the 
representation defined by U'"', hence U(*)(g) - I + dJ1. Jl are the generators of 
infinitesimal fast rotations. Similarly the vector fields 

Let us denote by J J  

G/ -dxp(x)a, (5.1) 

related to the Killing vector fields by 

IC/ -GI (5.2) 

generate infinitesimal slow rotations. (Recall the presence of the minus sign [IO] also present 
in (3.6~1) and (4.2)) Both sets of generators satisfy the commutation relations of g i.e. 

(5.3a) 

(5.3b) 

Using (2.17) one can see that 

U'"(g)H(x)U'""(g) = H ( g x ) .  (5.4) 

Moreover, employing the infinitesimal transformations gx  = x + 6 x ( u , x ) ,  U("(g) - 
I + U'JJ  we get, using (5.1) and (5.4), 

(5.5) [JI + G I .  H ( x ) l  = 0 .  

As the kinetic term is the second-order Laplace-Beltrami operator [GI, Hb0] = 0, we 
conclude that 

[A + G/, Y o t l  = O .  (5.6) 

As a next step we employ the Born-Oppenheimer method to obtain an effective slow 
Hamiltonian. We merely refer to the result which is a straightforward generalization of the 
one presented in [2,14] 
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In (5.9) the range of 1 varies according to the dimension of the corresponding eigensubspace 
W,,, with energy &Im1. (Summation for the repeated indices is implicit.) The terms dU(") 
and V(") are responsible for the appearance of the gauge forces of magnetic and electric 
type [ 14,151. 

Now we have only slow variables hence we expect some modification of the slow 
generator of (5.l), say G,'"), satisfying 

[GI(") ,  HcK(")] = 0.  (5.10) 

The obvious guess for G,'") by replacing a, in (5.1) by the covariant derivative VWLl(") hence 
obtaining B,") of (5.8), fails to close under commutation to a Lie algebra of G since 

[BI'"), BJ'"'] = CIJKBK("' + 6xI'8xJuFpu'"' (5.11) 

as can easily verified using Sx,"a,(Sx,')-8x,"a,(6xr') = -C,JKSxx" which is equivalent 
to the commutation relation for the Killing vectors of (4.2). 

Now we exploit the symmetry property (3.94 also satisfied by A,'") of (3.1 1) with 

W,'"'(u, x )  = U'W/'"'(X) = u'8y,'(x)Sa'"). (5.12) 

to construct the correct set of modified generators GI(")  satisfying the commutation relations 
of g. First we refer to the result [5,61 

L,,W,'") -Ly,W,'") +[W,'"', W,'q = C,,KWK(") (5.13) 

which is a consistency condition for the compensating gauge transformation, and we used 
the definition (3.60). Using (5.13) one can prove that the modified set of generators 

c,(") = c, + w,(") = -6xl'ap + wlu~a(n)  (5.14) 

satisfy the commutation relations of g. An alternative form of GI(")  can be obtained by 
introducing the quantity [5,6] 

@,( ' ) (X)  E 4~"(x)S,") E Wr'"'(x) + Sx/"x)d,'")(x). (5.15) 

Expressed in term of 4 1 ' ~ )  

G,W =a,(') + 0,'") (5.16) 

which is a modification of the term we tried to use in (5.11). The quantity Qpl'") needed to 
cancel the extra term on the right-hand side of (5.11) satisfies [5 .6 ]  

-ax ,"F '" (n) = v '")41'") (5.17) 

(use (3.94 and the definition (5.15)), which is a symmetry equation for Fgu("). 
As a further step we have to show that our modified set of generators GI(")  commutes 

with our effective Hamiltonian of (5.7). i.e. (5.10) is valid. Using (5.11) (5.16) and (5.17) 
one can easily prove that 

[G,'"', BJ'")] = C , J K B K ( n )  (5.18) 
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as a result the first term on the RHS of (5.7) commutes with GI"')). (The proof is similar 
to the one usually given for the quadratic Casimir of a semi-simple Lie group, see e.g. 
Gilmore 1161.) 

Since the third term of (5.7) is a constant muItiple of the unit matrix, we are only left 
to prove that VI") commutes with our generators GI("). Using (5.9). (2.14). (3.3) and (3.8) 
and the fact that (mlSaln) fo rm # n equals zero (see (2.13)) we get 

( - V ( 9 i j  = ~ ~ ' ~ I @ ~ J ~  E,"Ep"(n, i GO) IE~YT, Im, l(xo)) (m,  l ( x o )  I 
1 

In, j (~0)) 

1 
211.1 

= - 4 J ~ ~ c ~ P ( n ,  i(xo)IraTpIn, j ( x 0 ) ) .  (5.19) 

Here we also used the properly re(") = (n,i(xo)lT&. j ( x 0 ) )  = 0 to allow summation 
for all possible values of m and I ,  hence obtaining the resolution of identity. Moreover, 
according to (4.4) the inverse matrix q I J  satisfies 

r+JUIKUJJL = r f L  (5.20) 

hence 

(-v("))i j  1 I 
- (n. i(xo)lrl~pT,TBln.j(xo)) = G ( n ,  i ( x o ) h r J ~ ~ ,  - quhSaShln, j ( x o ) ) .  2M 

(5.21) 

(The Cartan-Killing metric has a block-diagonal structure according to the decomposition 
(2.1 I), i.e. the only elements are qoh and qap both being non-singular.) Using the formula 
for the second-order Casimir invariant in the representation defined by U(') 

CO-('") Z? V"JIJJ (5.22) 

we obtain the result 

I 
2 M  

( -V")) ,  = -(C(U'"') - C(R'"'))S.. '1 (5.23) 

where C(R'")) is the Casimir invariant of the subalgebra h in the representation defined by 
(2.13). Notice that for the special case g = 4 2 ) .  h = U(]), G / H  - S2, i = j = 1 we 
get VI") = (i(i + 1) - n 2 ) / 2 M  in agreement with [14]. 

Being the constant multiple of the identity V(") clearly commutes with GI[" ) ,  hence 
(5.10) is satisfied, 

6. Examples 

6.1. SO(d + l)/SO(dJ 

Let us consider as our first example the rank one symmetric spaces the d- spheres, i.e. 
G / H  +- SO(d + l ) / S O ( d )  - Sd. The d(d + 1)/2 generators 3.. of SO(d + I )  with 
&,j = 1,2,  ..., d + I ,  (& > j), generating rotations in the ( & p )  planes satisfy the 
commutation relations (d 3 2) 

(6.1) 

=a 

[3+), &I = 6&?.?& + 6g& - S&Q-$.r - 6&J&P.  
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We identify the generators of the subgroup S O W  as Smp = &@ (or, ,6 = I ,  , . . , a') (Y > 0, 
and the ones not belonging to the subgroup as T, f & + i .  i.e we have the identification 
of the subalgebra indices by a =a& or > 6. The commutation relations are 

[Sap  S,,l = ~..Y,S,, + +&, - &,S,, - spes., ( 6 . k )  

[S+% Tyl = &yTa - &,TB (6.2b) 

[Tco Tpl = -sap ( 6 . 2 ~ )  

now having the (2.11) form. Reading off the structure constants needed for (4.11a, b) we 
can build up the matrices M N  and N M  having the form (x2 = x,x") 

(6.3a) 

(6.36) 

Using the power-series expansions (4.14a, b) and the properties ( M I V ) ~  = x2(MN) and 
( N M ) ~  = xZ(NM) we get 

c o s m  = 1 4- x-*(cosx - 1)MN (6.4a) 

sin f i  = I + x-y- sinx - 1)MN 
m X 

(6.46) 

which can be used in (4.10) to build up the matrix 'D, '. Similarly for the quantities (4.13a, b)  
and (4.8) we find 

cosx - 1 
X* 

Agap(x) = X'@8,U' 

sinx ( si:x)x,$' E w U ( x )  = -&e+ 1 - - - 
X 

cosx - 1 
xs inx 

r I * Y ' ( X )  = X[YSm<' 

where [ 1 denotes antisymmetrization of the corresponding indices. 
According to (4.9) the Killing vectors are 

a x,xfi a 
ax# x2 ax@ 

K ,  =xcotx- + (1  - XCO~X)-- 

(6.5a) 

(6.56) 

( 6 . 5 ~ )  

(6.6a) 

(6.6b) 

satisfying the commutation relations ( 6 . 2 - 2 )  with a minus sign (see (4.2)). Moreover using 
the definition (5.12) and formula (4.7b) we get for the compensating gauge transformation 

(6.7a) WUpW = s er8 ( 0 )  

(6.76) 
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Hence our modified set of SO(d + 1) generators is 

C a p  = -IC, + W$) 

G.(") = -ICa + We(") . 
( 6 . 8 ~ )  

(6.8b) 

Notice that our use of normal coordinates x p  defined by (2.10) resulted in a nonlinear 
realization of the SO(d + 1) action on S", which when restricted to the SO(d) subgroup 
became a linear one (see (6.6a, b)). Such realizations have been used in field theory 
following the paper of Coleman et a1 [17]. However, embedding S" in Rdc' by using the 
coordinates 

Y"+l = cosx (6.9b) 

satisfying Y,Yw + Yd+l Yd+' = I ,  we can obtain a linear realization of the SO(d+ 1) action, 
and the modified set of generators is 

(6.10~) 

(6. lob) 

By using the coordinates (6.9~. b) we have identified x = (x,x@)~/* with the polar 
angle 0 which measures the length of the geodesic with initial tangent vector xp/x in 
accordance with the definition of normal coordinates. We stress however, that this possibility 
of obtaining a linear realization from a nonlinear one crucially depends on the embedding 
of G I H  in R" ford conveniently chosen. 

To be more specific let us consider a class of models where the slow configuration 
spaces are even-dimensional spheres [15, IS]. According to (2.2) the kinetic term is the 
second-order Laplace-Beltrami operator on S' (d = U). Let us specify 2-4") in (2.2) to 
be the (2' x Z')-dimensional spinor representation of SO(21 + I ) ,  which, when restricted 
to the SO(21) subgroup, is reducible and contains the huo ('2-l x Z'-')-dimensional spinor 
representations of SO(U),  with positive and negative chirality. Let HO be the matrix 

I O  
H o = ( o  - 1 )  (6.1 1) 

( I  is the ?.'-I x ?'-I unit matrix) clearly commuting with the restriction of U(') to 
the subgroup SO(21) which is block diagonal. Recall that the spinor representation 
of SO(21 + I )  is generated by a (21 + I)-dimensional Clifford algebra with generators 
rs (a = 1,2.. . . ,21+ 1) satisfying 

[re, = 2sSbi (6.12) 

where 1 is the 2' x 2' unit matrix. The generators of so(21+ 1) in this representation are 

(6.13~) 

(6.13b) 
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satisfying (6.2a-c). We can use, for example, the representation 

where the are 2I-l  x 2'-' matrices satisfying [Ee, Cpt) = 28,pI. (The explicit form 
of these matrices can be given using a recursive procedure starting from the usual Pauli 
matrices, see [15.18].) According to (6.11) we have two 2'-'-fold degenerate subspaces 
with corresponding eigenvalues & I ,  hence we can label the eigensubspaces by n (&), 
Moreover one can easily prove using (2.10) for U"'(x) with (6.13b), and (6.11) in (2.2) 
that 

H ( Y ( x ) )  = raY6(x) d = i , ~ ,  .. . , 2[ + I . (6.15) 

-ia/aY& our class of models in (2.2) can  be where (6.9a, b) were used. Introducing Pi 
expressed in the simple form 

I 
H,,, = -P'+ i-iYi f i  = 1,2, ..., 21+ I .  (6.16) 

By calculating the quantities Afi("), V(")  of (5.7) we can build up the effective 
Hamiltonians He#' (see [15] for a detailed discussion). Of course the modified generators 
defined by (6.10a, b) with 

2M 

(6.174 

(6.17b) 

will commute with this effective Hamiltonian. Notice also that the matrix elements T,(+) 
and Tu(-) are zero satisfying our restriction imposed on our class of models. 

Let us consider now the special case I = I which is just the example of section 2. 
(see (2.3)-(2.9)). The coset is S0(3 ) /S0 (2 )  - S U ( Z ) / U ( l )  - Sz the 2-sphere. Since 
the geometrical properties of our coset characterized by the quantities A,". E,=, IC, are 
independent of the particular representation, we can use (6.5a, b )  and (6.6a, b )  to calculate 
them, and then the ones of (6.7) and (6.8) depending on the representation through the 
matrix elements Su("'. Let U(a) be the usual SU(2)  representation characterized by the 
(integer or half-integer) number h, and the matrices of (2.5) are also supposed to be in 
this representation. Let us choose H, = i 3 .  The eigenvalues of HO are restricted by 
-1 < n < h. The subalgebra h is spanned by S = 33 alone (a = 1). Moreover we have 

S'"' = -in (6.18) 

(recall our convention of using anti-Hermitian generators). Using the coordinates (2.3) we 
can easily reduce formulae (6.5)-(6.8) for our case. However it is more instructive to use the 
Cartesian coordinates ( X I ,  X?, X,) (see (2.7)). For the gauge-potential Ai'"' ( f i  = I ,  2.3) 
we get 

(6.19) 
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i.e. the vector potential of a monopole (well defined on the northern hemisphere) with 
monopole strength n. Straightforward calculation yields the Killing vectors of (2.8) and the 
compensating gauge transformation 

(6.20) 

The modified generators according to (6.8a, b) are 

a 
ax; GI"') = -~~f i ;Xb-  + WfO (6.21) 

where the indices of p, 6. and I have the same range. We can obtain a more familiar form 
by using the quantity QI'") of (5.15). Since G X I B ( X )  & f ; f i X ;  we get, from (5.15), 

= -inXfiJfi, I = 1,2 ,3 .  (6.22) 

By virtue of (5.8) and (5.16) the alternative form is 

GI(") = -&ljfiXfi(a; + Ai'"') - inX;8'f (6.23) 

which is the well known modification of angular momentum operators when magnetic 
monopoles are present. The usual form of these operators [5,6. 191 involves the quantity 
R (XfiXb)'/* which is not equal to 1 as in our case. Then we can regard the gauge field 
(6.19) living in R3 - IO) rather on S2. In this case (1 + X3) in (6.19) have to be replaced 
by R(R + X3), and -inxi, in (6.23) by -inX;/R. 

Similarly the gauge-fields obtained from (6%) using (3.11) and (6.17u,b) can be 
extended from Su to R2/+' - {O) by introducing R = (Yf iYf i ) ) '"  (p = 1,2, . . . ,21+ 1) into 
our formulae. These gauge-fields having the form 

are the higher-dimensional non-Abelian monopoles studied in [20]. A straightforward 
calculation shows that in this case our modified generators (6.100, b) can be cast into 
the form 

G.- (* )  P U  = yg(ao  + &(*)) - yG(afi +A$( * ) )  + R*Fii,(*) (6.25) 

where Ffi+(*) = afiA;(*) - &A-'*' P + [da(*), A;'*)] with Az(+I'*) = 0. To prove (6.25) 
notice that it is of the (6.23) form, and then we only have to show that R2Ffi;'*) = @.e(*) PV 

where @ ~ c ( * )  is the antisymmetric (21 + 1) x (21 + 1) matrix built up from the components 
~ . r u  = 1,2,. . . ,21, and @@I*) of (5.15). The set of modified generators in 

(6.25) can be regarded as a higher-dimensional generalization of the one studied by Yang 
191 in the special case when 1 = 2, in order to obtain the SU(2) monopole harmonics. 
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6.2. SO(d.1 j/SO(dj and algebraic scattering theory 

It is very easy to generalize these results for the coset space SO(d,  l ) /SO(d) ,  i.e. by 
choosing for G the non-compact group SO(d ,  I) and for H its maximal compact subgroup 
S O ( d ) .  The resulting coset space is the upper sheet of the double-sheeted hyperboloid. that 
can be imbedded in by using instead of (6.9a, 6) the coordinates 

sinhx 
z, = y X' ( 6 . 2 6 ~ )  

&+I = coshx (6.266) 

satisfying -Z,Z' + = 1. In this case the modified generators are 

crrS[") = z,ap - zpa. + s , ~ ( ~ )  ( 6 . 2 7 ~ )  

G,'"' = Zaad+i + Zd+ia. + ZYS YU (n) (6.27b) 

satisfying the commutation relations of the so(d, 1) Lie algebra, and the matrices Sap(") form 
a representation of so(d). (Notice the sign change in (6.276) and recall that for so(d, I )  
the commutation relations of (6.2a-c) are the same except for the minus sign of Smp in 
( 6 . 2 ~ )  which has to be changed.) In this way we have obtained a non-standard realization 
of the Lie algebra of the non-compactgroup SO(d,  1). An important property of SO(d, I )  
is that among its infinite-dimensional unireps there is one indexed by a continuous series 
of numbers [21] 

1 + zd+l 

j = - f ( d -  1) +ik (6.28) 

where k > 0 is a real number. 
According to the idea of algebraic scattering theory [22] such representations can be 

used to characterize scattering states of a Hamiltonian writkn as a function of one of 
the Casimir operators C of G. Some authors [23] also stressed the physical relevance of 
obtaining explicit interaction terms by using particular coordinate realizations for C coming 
from realizations of g. 

In this spirit we can try to use our realization of the so(d,  1) algebra given by ( 6 . 2 7 ~ .  b )  
to build up the Casimir operator C["' = -$Gup(n)Gu~(") + G,(")G=("). The eigenvalue 
problem for C(") is 1211 

(6.29) 

where 

2 UP (n)GaP")Ik . m , n )  = m ( 2 - d - m ) l k , m , n )  (6.30) 

i.e. the eigenvalue problem for the second-order Casimir of the maximal compact subgroup 
SO(d).  Equation (6.29) can be regarded as a Schradinger equation describing a scattering 
process with scattering energy k2. Notice also that there is another SO(d)  subgroup involved 
in this process namely the one described by the generators Sap(") appearing in (6.27a, b).  It 
is interesting to note that the presence of this subgroup can be regarded as the hallmark of 
some fast variables according to section 5. Moreover we expect that both sets of quantum 
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numbers m and n will appear in the interaction term obtained from (6.26). An explicit 
calculation was carried out for the simplest case, namely G - SO(2. I )  H - SO(2) - U( 1) 
(d = 2) [24]. In this case (6.29) yields [24] 

(6.31) 

(6.32) 

After solving (6.311, we can determine the S-matrix from the asymptotic form of the solution. 
The result is in agreement with the one obtained by using the algebraic scattering theory. 

Calculating the quantities of section 4 and using the expression for the modified 
generators (5.14), we can obtain realizations of other non-compact groups, on symmetric 
spaces. Higher rank symmetric spaces, e.g. SO(p,q)/SO(p) x S O ( q )  where 
min(p, q )  > 1, are especially interesting since they can describe higher-dimensional 
scattering. A well studied example of that kind is the group SO(3,2). This group can be 
useful for the study of heavy-ion reactions [25]. Since the very construction of our modified 
generators clearly shows the possible connection with the dynamics of two different types 
of variables, then two types of quantum numbers will appear in the expression for the 
S-matrix. From the range of such quantum numbers in the scattering matrix we can gain 
some information on the form of G representations characterizing the dynamics of the fast 
(internal) degrees of freedom. Hence, besides the possibility of describing the scattering 
data by employing a non-compact group G ,  we also have the advantage to implement this 
symmetry group in some dynamics compatible with such data. Therefore such realizations 
might deserve some attention in physical applications. 

7. Modified symmetry generators and induced representations 

Having explained the origin of the modified generators, let us turn to the question of 
what kind of role they are playing. According to (5.10) such generators will yield the 
'good' quantum numbers for the effective theory. Moreover, according to (5.10) we expect 
that Hew(") can be expressed entirely in terms of the Casimir operators of G and H in 
the particular representations used for them. Since the term V(") of (5.7) can indeed be 
represented i n  this form (see (5.23)), we hope that we can do this for the first term on the 
right-hand side of (5.7) too. To show that this is really the case we compute qfJC,("'G~'"' 
by using (5.16). Comparing the definition of @I(") (5.15). using (5.12). with (4.76) we 
obtain the following expression for @!("): 

@,("I = D,'(X)S"("). (7.1) 

Notice also that according to our restriction T,(") = 0 this quantity is simply 
(n. i(x)IZ~ln, j ( x ) ) .  Using (4.74 and (5.8) 

q ' J ~ l ( n ) ~ J l n )  = -~I~z),Uz),aE,'S,(")V,(") = 0 (7.2) 
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according to (5.20) and the block-diagonal structure of q I J .  Moreover by virtue of (5.8) 
and (5.17) we have 

q 1 3 ( ~ l ( n ) @ J ( n ) )  = -q1J8xJ@~, , (n)@J(n)  = ~ " ~ X ~ @ ~ X ~ " F , , ,  = 0. (7.3) 

Now we can calculate ~ l J G I ( n ) G ~ ( " )  using (5.16) and (7.1) 

c (p (n) )  ~ q l J ~ I ( n ) ~ J ( n )  = q l J ~ l ( n ) ~ , ( " )  + , ,1JZ),mDJbSu(")Sh(n), (7.4) 

Using again (5.20) we get the result for the first term on the right-hand side of (5.7) as 

(7.5) 

where C ( R @ ) )  is the quadratic Casimir operator of h in the representation defined by (2.13). 
Hence the final form of the effective Hamiltonian is 

( C ( P )  + C(U'"') - 2C(R("))) + E ( " )  . (7.6) 
I 

2 M  
Hta(") = _ _  

Since the representation content of the fast Hamiltonian H ( x )  of (2.2) is fixed, we have fixed 
values for the Casimir invariants of C(U(") and C(R(")). Hence the problem we have to 
solve is to find the eigenvalues and eigenfunctions of C(pCn)). Notice that the functions we 
are searching for are actually square-integrable sections of the homogeneous vector bundle 
with base space GIH and fibre a dimR(")-dimensional complex vector space. 

In order to clarify these issues we have to go  back to the Born-Oppenheimer expansion 
of the total wavefunction I*) satisfying (Htot - E)IW) = 0. Moreover, in the following 
we assume that G is compact. Then we can choose a finite-dimensional unitary irreducible 
representation for U(",. Since we now have a finite-dimensional Hilbert space for our fast 
degrees of freedom we define 

Y p ( x )  = ( ( X I  8 (Pl)l*ll) (7.7) 

where l p )  , p = 1.2, ..., dim U(') are basis vectors for this representation. The action of 
an unitary representation V(g)  of G on Q,,(x) is 

W,'(x) = ( V ( g ) W p  ( 1 )  = U(ilql,(g)Qqcg-'x) (7.8) 

where L((",,,(g) is the matrix of the unitary irrep U(*)&) in the basis Ip ) .  whose restriction 
to the subgroup H contains the unitary irrep R(") of H .  Introducing the I p )  representation 
for the eigenstates of the fast Hamiltonian as 

pl, i(")(x) = ( p l n , i ( x ) )  p = 1.2. ...3dimL4(A) i = 1,2,. . . ,dimR("' (7.9) 

we can express the expansion of the total wavefunction Yn(x)  in the form 

(7.10) 

Note that in this expansion the q,,i@) are playing the role of 'basis vectors' for the degenerate 
eigensubspace and the 'expansion coefficients' h'") are satisfying the Schrodinger equation 
with H,f(") expressed as in (5.7). 
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Let us now compute q,,'(gx) using the expansion (7.10). The expansion of Qi,'(gx) 
will be of the same form (with x replaced by gx) as in (7.10) except for some transformation 
of the 'coefficients' $i(") (gx). Using (7.9) and (2.17) we obtain the result 

$j(')'(gx) = Rji'"'(h(g, x))@;'"'(x). (7.11) 

Hence the representation of G on the sections $bj(")(x) of our homogeneous eigensubspace 
bundle is the representation induced by the irrep R(") of the subgroup H. (For a nice and 
short review of vector bundles and induced representations see e.g. [26, appendix B].) It 
can be shown that the transformation property (7.1 1) defines a unirary representation U" 
of G on the space of square-integrable sections $ j ( " ) ( x ) .  Using the infinitesimal version 
of (7.11) by employing gx - x + ~ ' 6 x 1 ,  and h(g .  x) - I + u'W, one can prove that the 
modified generators Gi'"' are nothing more then the infinitesimal generators of this unitary 
representation induced by the irrep E(") of the subgroup H .  More explicitly we have 

( u ~ ( A ) Q ) ~ ( ~ ) ( ~ )  = (-sx,pa, + ~ , ( n ) ) ~ ~ $ p ( x ) .  (7.12) 

Having clarified the group-theoretical meaning of the generators GI(") we are now in 
a position to say something about the allowed values for the Casimir invariants of C(@')) 
in (7.6). First recall that the induced representation can be written as a direct sum of irreps 
of G. We would like to know what kind of finite-dimensional unitary irreps appear in the 
decomposition. According to the Frobenius reciprocity theorem (26,271 the multiplicity of a 
particular finite-dimensional irrep in the induced representation is equal to the multiplicity of 
our fixed representation R(") of the subgroup H in the restriction of this finite-dimensional 
irrep of G to H. Let us denote this finite-dimensional unitary imp  of C by U("), In 
particular the representation U(') used to fix the representation content of our fast variables 
(see (2.2)) corresponds to one special value for (A) labelling this representation. Since 
this representation contains R'"' it will also be contained in the induced representation, 
with the same multiplicity. More generally the allowed representations U'") in the induced 
representation are the ones containing R(") when restricting them to the subgroup H .  Hence 
the space of vector-valued functions $ j ( " ) ( x )  on G / H  (sections) can be decomposed into 
a direct sum of 'allowed' invariant subspaces characterized by eigenvalues for the Casimir 
operator c(@) on them. 

As an example let us consider the simple model discussed in section 2 (2.3)-(2.9). For 
U(*) we take an SU(2) representation characterized by afrxedh. For the subgroup irrep R(") 
we take one of the (one-dimensional) representations contained in the resmiction of U@) to 
H - U(1) (generated by 33 alone) characterized by the number n.  Then in the induced 
representation only those U("' will appear for which A = 1111, In + 11, . . . . In particular 
when n is half-integer only half-integer A will appear. Hence the eigenvalues of He*(") on 
the allowed subspaces are 

(7.13) 

Notice, that for the total Hamiltonian H,, slow rotations have been generated by the standard 
angular momentum operators (2.8) with inreger A. However, after integrating out the 
fast variables we obtained an Herr(") with modified angular momentum operators with the 
possibility for A also being half-integer. 

How can we describe the eigensections of H&) of (7.6)? In other words we are 
searching for the components of the square-integrable eigensections that are irreducible 

E(*+),, = , , ( ~ ( ~ + i ) + ~ ( ~ + i ) - Z n ~ ) + n  1 ~ = i n i , i n + i i ,  . . . .  



2876 P LiLwy 

under G, i.e. the 'harmonics' of the fields. The answer is well known in the mathematics 
literature in connection with harmonic expansions of arbitrary fields defined on compact 
homogeneous spaces. We merely refer to the result [26] according to which q j ( " ) ( x )  can 
be expanded as follows 

(7.14) 

where p = 1,2, , . . , dimU("), i = I ,  2 , .  . . ,dimR("), and summation is restricted only to 
the 'allowed' values of A, and is the multiplicity of the representation R'") of H in the 
restriction of U(") to H .  Equation (7.14) tells us that the harmonics are essentially matrix 
elements of the irreps A for which 

For our example the sum over representations in (7.14) is restricted to the values 
A = Inl, In + 11.. . ., where n is fixed by the choice of eigensubspace for forming Her("). 
The harmonics are the Wigner D-functions Dnp'"'(L.-l(x)) p = -A, . . . , A, also called 
the monopole harmonics 1191. 

For the general case, in order to determine the decomposition of the space of sections 
we have to know the multiplicities of R'") for any U("). This task has to be carried 
out for the given fields in question. For example, in case of the even-dimensional 
spheres of section 6, @j(" )  i = 1 2, . . . ,2'-' are spinor fields on S' transforming with 
respect to Spin(21) the two-fold covering of SO(21). Hence to find the eigenvalues of the 
Casimir operator qrJG,(")C,(") we have to diagonalize the corresponding Casimir operator 
of Spin(21 + I), and keeping only those eigenvalues which correspond to representations 
of Spin(21 + 1) containing the spinor representation of Spin@[) with positive (R(+)) or 
negative (R(-)) chirality. 

Finally we give a brief sketch of the 1 = 2 case, which can be regarded as the physical 
example of a spin particle interacting with quadrupole electric field 1281. Moreover this 
appears to be the simplest case involving non-trivial non-Abelian gauge-fields (instantons). 
Here the coset is the 4-sphere S4 - Spin(S)/Spin(4) - S0(5)/S0(4).  The modified 
generators of g - spin(5) - so(5) given by (6.25) with b, ir = I , .  . . , 5  act on the square- 
integrable sections of the homogeneous vector bundle over S4. where the fibrum is now 
two dimensional. U(*) is the four-dimensional spinor representation of S0(5), and the 
SO(4) representation contained in its restriction is simply the block-diagonal part of this 
4 x 4 matrix, containing two SU(2)  blocks corresponding to the positive (negative) chirality 
spinor representations of SO(4) - (SU(2)  x S U ( Z ) ) / Z z .  Since the group SO(5) is rank 
two we can label its irreps by the two integers U I  and g, QI 3 u2 0. Following [9]. 
we will refer to a particular irrep of SO(5) by (QI,~z)~. Since SO(4) has the product 
structure of two SU(2)  we can label its irreps by the two numbers bl and bz, where 
bl = 0. 4, 1,. . . , h = 0, 4, 1 . . ., in the form (bl, b&. In this notation 191 

# 0. 

(-(ul"lS"Zl) = -L( Q I ( ~ I + ~ ) + ~ z ( ~ ~ + W N  (7.15) 

where 

NV'"'."'') = (1 f ;ul)(l + u d ( l +  fc.1 +u*)) ( l  f a 1  -ad (7.16) 

and IN is the N-dimensional unit matrix. In particular the four-dimensional spinor irrep 
of SO(5) is (1,0)5, with Casimir invariant -$. The representations R(+) and R(-) are the 
ones with (i, 0)4 and (0, f)4. If we choose, e.g. the eigensubspace with positive energy 
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(chirality), we have to find the representations ( a l . ~ ~ ) ~  which contain the irrep (f,O).,. 
Using the result 191 

r f s  r - s  

4 
(7.17) 

1 I where r = ~ ( U I  - ad,  @ I  - UZ)  t I , .  . . , ?(a! t a2) and s = $(a2 - a11 l(a2 - a ! )  t 
I , .  . . , ;(a1 -ad ,  we can easily show that these representations have the form (a,, a ,  - 
In particular the irrep ( I ,  0)s clearly contains ( f , O ) e .  Hence according to the Frobenius 
reciprocity theorem the irreps (al .  a, - 1)s are contained in the induced representation. The 
find result for C ( P )  is 

' 2  

(7.18) 
U ,  >o 

where 
(7.19) 

This is the same result Yang obtained studying the indicia1 equation of the differential 
equation corresponding to the eigenvalue problem of e@*)). Using these results and (7.6) 
we can easily write down the allowed set of eigenvalues of 

8. Conclusions 

In this paper we have investigated the origin of modified symmetry generators by employing 
a simple class of models containing two types of variables: 'slow' and 'fast'. The total 
system, containing both types of degrees of freedom was supposed to have a symmetry 
characterized by the semi-simple Lie group C ,  meaning that simultaneous G rotations of 
both types of variables leave the system invariant. As a further step we have taken into 
account the different energy scales associated with our different types of variables by using 
the Born-Oppenheimer method. This procedure was based on the assumption that the 
energy spacings between the energy levels corresponding to degenerate eigensubspaces, are 
sufficiently large, hence no transitions due to the slow system can occur between them. 
Restricting our attention to one particular eigensubspace labelled by n, yielded an effective 
Hamiltonian Her?) for the slow system. Due to the presence of induced non-Abelian 
gauge fields in H&), the G rotations on the slow degrees of freedom are realized in 
a non-trivial way. The generators of such rotations are the modified generators GI"'), 
I = 1,2, , . . , dimg, corresponding to our particular choice of  a degenerate eigensubspace. 

We have given illustrative examples for coset space models based on spheres and 
hyperboloids. We identified the modified symmetry generators as the generators of the 
induced representation of C, induced by a subgroup representation of H coming from the 
fast variables, acting on the sections of the eigensubspace bundle over G / H .  This result 
enabled us to recast the problem of exotic quantum numbers for effective quantum systems 
in purely algebraic terms via the Frobenius reciprocity theorem. Moreover we have shown 
that both the Born-Oppenheimer scalar potential (5.23) and the kinetic term containing 
induced gauge fields (7.5) can be expressed in terms of the Casimir invariants of G and H .  

The notion that for homogeneous spaces G I H  differential relations reduce to algebraic 
ones involving matrix representations of G and H ,  has already been extensively used 
by physicists following the influential work of Salam and Strathdee [29]. In this case 
harmonic analysis on coset spaces provided a means for calculating the excitation spectra 
for dimensionally-reduced (effective) theories, originally formulated in higher dimensions. 
It is interesting then that such techniques now find some application in the study of coupled 
systems of two types of degrees of freedom with symmetry. 

N@l)  = $U,(UI + I , ( f U l  + I ) .  
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